Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

نویسندگان

  • Kaushal Nishad
  • Johannes Janicka
چکیده

To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR) appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides) emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS) turns inside the exhaust port immediately into gaseous ammonia (NH3) by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics) framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics as well as the effect of gravity is pointed out. The prediction capability of the model variants is assessed by comparing the achieved results to each other and with experimental data. It turns out that satisfactory agreement between experiment and numerical predictions is achieved for a wide range of operating temperatures by using correlations by “Wilke and Lee” for urea and by “Fuller et al.” for water. The results are essentially sensitive to gravity. From subsequent comparisons of different ways to account for the thermal decomposition in the gaseous urea, a significant difference is observed. Finally, the 1/3 film rule widely used for evaluating the material properties in the film shows accurate prediction of both evaporation and thermal decomposition regimes of urea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of a Single Fuel Droplet Evaporation

In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable propertie...

متن کامل

Numerical Investigation of the Flow across the Static Mixer with the Injection of Urea-water-solution for Automotive Scr-system

Selective catalytic reduction (SCR) technique has been widely used for the abatement of the nitrogen oxides (NOX) emissions from diesel engines for decades. The urea-water solution (UWS) spray over the exhaust gases of diesel engines is one of the important methods used for exhaust after-treatment systems. The urea water solution is extensively injected in the upstream of the catalyst to genera...

متن کامل

Steady State Analysis of Nanofuel Droplet ‎Evaporation

The potential for nanofuels as one of the clean sources of energy on account of its enhanced combustion performance coupled with low emissions has been established. Considering the importance of the fuel evaporation phase in the entire combustion process, this work presents an attempt at applying the steady state analysis equations to nanofuel experimental data obtained from the li...

متن کامل

Evaporation Characteristics of Diesel and Biodiesel Fuel Droplets on Hot Surfaces

In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces has become an important subject of interest to engine designers, manufacturers, and researcher...

متن کامل

A genetic algorithm-based approach for numerical solution of droplet status after Coulomb fission using the energy

As a droplet moves, due to evaporation at the surface, the droplet size is gradually reduced. Due to decreasing the size of the droplets moving in the spray core, the surface charges become closer and the repulsive force between the charges increases. When the Coulombic force overcomes the surface tension force (Rayleigh instability) the droplet breaks into smaller droplets (Coulomb fission). T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018